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ime Series (1984): 256-272]. Itis shown than an S-estimate based on a jump-functon type
p solves the min-max bias problem for the class of M-estimates with very general scale.
This estmate is obtained by the minimization of the o-quantile of the squared residuals,
where o =x(g) depends on the fraction of contamination €. Wheng — .5, a(g)— .5
and the min-max estimator approaches the least median of squared residuals estimator
introduced by Rousseeuw [J. Am. Statist. Assoc., 79].” For the bounded influence class of
GM-estimates, it is shown the a "sign" type nonlinearity yields the min-max estimate. This
estimate coincides with the minimum gross-error sensitivity GM-estimate. For p =1, the
optimal GM-estimate is optimal among the class of all equivariant regression estimates. The
min-max S-estimator has a breakdown point which is independent of the number of carriers
p andtendsto .5 as € increases to .5, but has a slow rate of convergence. The min-max

GM-estmate has the usual rate of convergence, but a breakdown point which decreases to

zero with increasing p . Finally, we compare the min-max biases for both types of

estimares, for the case where the nominal model is multivariate normal.
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MIN-MAX BIAS ROBUST REGRESSION

ABSTRACT

This paper considers the problem of minimizing the maximum 2 .ymr.totic bias of regression
estimates over €-contamination neighborhoods for the joint di- nhution of the response and
carriers. Two classes of estimates are treated: (1) M-estimaws with bounded function p
applied to the scaled residuals, using a very general class of scale estimates, and (2)

Bounded influence function type generalized M-estimates. Estimates in the first class are
obtained as the solution of a minimization problem, whiie estimates in the second class are
specified by an estimating equation. The first class of M-estimates is sufficiently general to
include both Huber "Proposal 2" simultaneous estimates of regression coefficients and
residuals scale, and Rousseeuw-Yohai "S-estimates” of regression [Robust and Nonlinear
Time Series (1984): 256-272]. It is shown than an S-estimate based on a jump-function type
p solves the min-max bias problem for the class of M-estimates with very general scale.
This estimate is obtained by the minimization of the a-quantile of the squared residuals,
where a=a(e) depends on the fraction of contamination €. Whene — .5, a(e)— .5
and the min-max estimator approaches the least median of squared residuals estimator
introduced by Rousseeuw [J. Am. Statist. Assoc., 79]). For the bounded influence class of
GM-estimates, it is shown the a "sign" type nonlinearity yields the min-max estimate. This

estimate coincides with the minimum gross-error sensitivity GM-estimate. For p =1, the

optimal GM-estimate is optimal among the class of all equivariant regression estimates. The )

min-max S-estimator has a breakdown point which is independent of the number of carriers
p andtendsto .5 as € increases to .5, but has a slow rate of convergence. The min-max

GM-estimate has the usual rate of convergence, but a breakdown point which decreases to

zero with increasing p . Finally, we compare the min-max biases for both types of . .

estimates, for the case where the nominal model is multivaniate normal.
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1. INTRODUCTION

In spite of the considerable existing literature on robustness, there is relatively little
published work on global robustness. Huber’s (1964) min-max variance approach is based
on neighborhoods which are not global by virtue of exgluding asymmetric distributions. The
shrinking neighborhood approach introduced by Jaeckel (1972), and used also by Bickel
(1984) and Beran (1977a, 1977b), among others, attempts to deal with asymmetry by putting
bias on the same asymptotic footing as variance. But, the shrinking neighborhood approach
could hardly be called global. Approaches based on the influence curve, such as optimal
bounded influence regression (Hampel, 1974; Krasker, 1980; Krasker and Welsch, 1982;
Huber, 1983) inherit the local or infinitesimal aspect of the influence curve itself.

It seems that the main global approach to robustness in recent years has been centered
around the construction of high breakdown point estimates, particularly for multivariate
problems where this approach presents real challenges. See for example: Donoho (1982),
Donoho and Huber (1983), Stahel (1981), Rousseeuw (1982), Rousseeuw and Yohai (1984),
Yohai (1987), Yohai and Zamar (1986). In the latter two papers, the authors construct
regression estimators which have both high breakdown points and high efficiency.

The hr .akdown point approach is highly attractive for a number of reasons, not the least
of which is the transparency of the concept and the ease with which it can be communicated
to applied statisticians and scientists. On the other hand, one nonetheless wishes to have
global optimality theory of robustness which emphasizes bias control for fractions of
contamination smaller than the breakdown point. Furthermore, bias is itself a very

transparent concept.

Along these lines we recall that Huber (1964) established the following result in his by
now classic paper: The sample median minimizes the maximum asymptotic bias among all
translation equivariant estimators of location, the maximum being over epsilon contaminated

distributions (and also Levy neighborhoods). It seems that this approach to global




robustness, namely the construction of min-max bias robust estimators has been essentially
neglected until quite recently, and this problem is quite clearly articulated in Hampel et. al.
(1986) (see lower left entry of Table 2, p. 176). Among the recent work in this area, we
know of the following as yet unpublished papers: Donoho and Liu (1985), who establish
attractive bias robustness properties of minimum distance estimators; Martin and Zamar
(1987a), who obtain min max bias robust estimates of scale; and Martin and Zamar (1987b),
who construct min-max bias robust estimates of location, subject to an efficiency constraint
at the nominal model. See also, Zamar (1985) for min-max bias orthogonal regression M-

estimates.

In this paper, we construct min-max bias robust regression estimates for two different
classes of estimates: (i) M-estimates based on bounded p functions and general scale (i.e.,
general scale estimate for residuals), and (ii) GM-estimates having bounded influence
curves. In the first case, the estimates are defined by a minimization problem, wnereas in the

second case the estimates are defined by an estimating equation.

It turns out that S-estimators introduced by Rousseeuw and Yohai (1984), can be
regarded as special cases of M-estimates with general scale, as can Huber "proposal 2" M-
estimates for regression and residuals scale. In fact, our min-max bias M-estimate is just

that, an S-estimate.

The paper is organized in the following way. Section2 introduces epsilon-
contaminated model for regression, M-estimates of scale based on bounded, symmetric
functions p, and the related S-estimates for regression. Section 3 establishes an expression
for the maximum bias of an S-estimate. We also display the special form this expression
takes for nominal multivariate normal models, and also the special form obtained for jump
functions p. , which take on the values 0—1, with jumps at ¢ . Section 4 introduces the

class of M-estimates with general scale, constructs a lower bound A 0 for the maximum bias

for fixed p, and a lower bound A* for Ap as p ranges over a broad class of loss
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functions. It is then shown that an S-estimate achieves A* . Section 5 constructs min-max
bias GM-estimates. These estimates are based on a "sign" function type nonlinearity in the
estimating equations, which corresponds to a weighted L1 regression, with weights inversely
proportional to the norm of the vector of carriers. Throughout Sections 2-5, we have for
simplicity considered the case where the intercept is known. In Section 6 we indicate how
our results may be extended to the case when the intercept is unknown and must be estimated
along with the slope parameters. Finally Section 7 provides a comparison of the biases of
min-max S-estimates and GM-estimates for the case where the nominal model is

multivariate normal.
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2. GENERAL SETUP AND S-ESTIMATES

2.1 The target model and maxi 1um asymptotic bias.
We assume the target model is the linear model
y = xX'05+u
where x=(x,%,;,..., X, )’ is a random vector in R @,=(8,,..., Gpo)’ are the
true regression parameters, and the error 4 is a random variable independent of x. Let F,

be the nominal distribution function of 4 and G, the nominal distribution function of x.

Then the nominal distribution function H, of (y,X) is

Hy(y,x) = Gy(x)Fy(y -x8y) 2.1

We assume that G, is elliptical about the origin, with scatter matrix A. Correspondingly,

we work with zero intercept until Section 6, which discusses how our results can be extended

to deal with an intercept.

Let T be an R’? valued functional defined on a ("large") subset of the space of
distribution functions H on RP*!. This subset is assumed to include all empirical
distribution functions H, corresponding to a sample (y,,x),..., (y,,X,) of size n

fromH . Then T, =T(H,) is an estimate of 0.

It is further assumed that T is regression equivariant, i.e., if y =y +x’b and
%= C" x for some full rank p xp matrix C, then T(H)=C ![T(H)+b], where H is
the distribution of (y,%). Correspondingly, the transformed model parameter is
6,=C!1[0,+b].

We define the asymptotic bias b, =b,(T,H) of T at H so that it is invariant

under regression equivariant transformations:

b (T.H) = (T(H)-8) A(TH)-0). (2.2)
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Therefore, we can assume without loss of generality, that G, is spherical, ie., A is

the identity matrix, and that 8, =0. Accordingly, the nominal model (2.1) becomes
Hy(y,x) = Go(lixll) Fotr) (2.3)
and correspondingly the asymptotic bias of T at H is given by the Euclidean norm of T:
b(T,H) = |ITHE)|. (2.4)

If the operator T is continuous at H, then T(H) is the asymptotic value of the
estimate when the underlying distribution of the sample is H. It is assumed that T is

asymptotically unbiased at the nominal model H,:
THy) = 0. (2.5)
We will work the €-contamination neighborhood of the fixed nominal distribution H,,
Vo = {H: H=(1-€)Hy+eH*}. (2.6)

where H* is any arbitrary distribution on R?*!. The maximum asymptotic bias of T

over VE is

B(T) = sup {|ITH)||: He V. }. 2.7

2.2 M-estimates of scale.

Let p be a real-valued function on R! satisfying the following assumptions.
Al. (i) symmetric and non-decreasing on [0, o), with p(0)=0

(ii) bounded, with lim“ oo pu)=1

(iii) p has only a finite number of discontinuities.

Let 0<b <1, then given a distribution function F , the M-scale functional is defined

(see Huber, 1981) as




p- -6 -
'i s(F) = inf{s: EFp(-%-)Sb}. (2.8)
Given a sample u=(u,,..., u,) from F, the corresponding M-estimate of scale is
s obtained from (2.8) by replacing F by the empirical distribution F, of u.
\ ]
Tl It is easy to prove that
' S(F) > 0 iff Pp(u=0) < 1-b. 2.9)
If this condition is satisfied with s(F) finite, and p is continuous, we can replace the
= inequality by equality in (2.8).
\ It can be shown that the breakdown point due to implosion, i.e., due to contamination at
- the origin which results in s(F)= 0, is 1-b, and the breakdown point due to explosion,
i.e., due to contamination tending to infinity which results in s(F) = oo, is b . The overall
3 breakdo an point is then €* = min{ b, 1-b }. For details see Huber (1981).
{
2 In the case where one is interested in estimating scale for its own sake, one usually
forces consistency at a nominal model Fy by setting b =E Fy p(u). This issue turns out to
be irrelevant for our present purposes, since as we see in the next subsection, we will only be
jij-j interested in obtaining a smallest M-estimate of scale with respect to the regression
parameter O in a particular parametrization of the scale functional. The choice of b will
::'.'; therefore remain at our disposal in obtaining a min-max bias regression estimate.
l;;l 2.3 S-estimators of regression for general H
; Let (y,x)e R? *! be a random vector with arbitrary distribution function 4 , e.g.,
H could be the empirical distribution function for (y,x). Forany 6eR let Hy be the
distribution of the residuals
& r@ =y-x0. (2.11)
)

Let s(F) be any M-estimate of scale as defined in Section 2.3, and to emphasize the
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independent roles of © and H indetermining Hg,let s(0,H)=5(Hg).

A functional T(H) is said to be an S-estimate functional of regression (see Rousseeuw

and Yohai, 1984) if there exists a sequence 8, € R” such that

im 6, = TH) (2.12)
and
lim  _s(6,,H) = inf s(6,H). (2.13)
" 0e R’

With regard to the existence of such a sequence, we assert:

If p satisfies A1 and H satisfies

su Py (x0=0) < 1-b 2.14
Pollz1 # ( ) (2.14)

then there exists some T(H ) satisfying (2.12) and (2.13).
This is a consequence of the following Lemma.

Lemma 2.]1. Suppose that p satisfies Al and H satisfies (2.14). Then ||, || — oo

implies lim _ _ s(8,,H)=0oc.

Proof of Lemma 2.1

Suppose that ||@, || o and let 8F = ——. Without loss of generality we can

16, Il
assume that 6F — 6* with |{|8*]|= 1. To prove the lemma it is enough to show that for

all s >0

EH{p([y-x'e,l]/s)} > 0.

A T AT
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Indeed, we can write

E,,{ p([y—x'e,.]/S)} 2 E,,{ p(ly - 116, X821/ ) 1({9;,0)}

where I, is the indicator of the set A . Since it is immediate to prove that
p((y -10,1Ix0y /s) L ge,0) —Lyge,q s Hy, the lemma follows from the
dominated convergence theorem and (2.13). O
It is easy to prove that if A/ is satisfied and p is continuous, then (2.12) and (2.13) will
imply
s(T(H),H) = min{s(0,H): 6 R? } (2.15)
However, in general (2.15) may not be true.

Observe that there may be more than one value T(H) satisfying (2.12) and (2.13). In
that case the choice of T(H ) is arbitrary.
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3. MAXIMUM BIAS OF S-ESTIMATES

3.1 Maximum bias of general S-estimates

Assume now the target model H is given by (2.4). We will need the following

assumption.

A2. Fy is absolutely continuous with density f, which is symmetric, continuous and

strictly decreasing for u 20.

A3. G, is spherical and PGo(x’9=0)=0 v0e R’ with 0=o0.

Under A3, itis easy to see that the distribution of x’6 depends only on ||6]|. Thus we set

g (s. el = Enop[’%"] a1

The following Lemma is a key result.

Lemma 3.1. Assume that p satisfies A/, F;, satisfies A2 and G, satisfies A3. Then g is

continuous, strictly increasing with respect to [|8]| and strictly decreasing in s for s > 0.

Proof of Lemma 3.1. Continuity of g follows from Al(iii) and A2: since p is continuous

a.s. [Fy], the expectation of p(y —x’0) with respect to F is a continuous function of

x'@ (see for example Billingsley, p. 181). Let s, >s,. Since p[(y—x'e)/le

2p [(y —x’O)/sz] as. [Hy], we have Ey p [(y —x’O)/sl] 2 Ey p [(y -x'0)/s, ] .

In addition, we have strict inequality unless (y -x'8)/s, =(y -x'0)/s, as. [H,], thatis
unless y -x'0=0 as. [H,]. The last is impossible because of independence of y and x.
By A3, the distribution of x’a is the same for any unit vector a. Thus the distribution of
x'0 is the same as that of ||@]| z , where z is a random variable distributed as x’a, ||a]| = 1.

Assume without loss of generality that s =1 and let ¢+, >r, 20. Since y is symmetnc
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about O and independent of :z , the conditional expectation g(r,z) = E[p(y —tz) | z] is

a non-decreasing function of |¢| . Hence

E{g(1y,2)-4(21;,2)} 2 0
and equality hoids only if ¢,z = ¢,z almost surely, that is only if z=0 almost surely.
The last is impossible because of A3. O

From Lemma 3.1 it is immediate that an S-estimate T(H ) is Fisher consistent at the

target model H,.

Let ¢, '(-,]|8]]) be the inverse of g with respect to s and g,”!(s,-) the
inverse of g with respect to {[8]|. The following theorem gives the maximum bias of an S-

estimate.

Theorem 3.1. Under the same assumptions as in Lemma 3.1, the maximum bias B(T) of

an S-estimate T over the contamination neighborhood V. is given by

(
g [g,“(%-:—:,O),l—’_-’;] if € <min (b, 1-b)

00 if e2min (b, 1-b)

\

Therefore the asymptotic breakdown pointof T is e=min (b, 1-b).

b-¢

T—_—;,O},—b—e},andsupposethat e<min(b,1-b). To

Proof. Let ¢ =gz'l [gl'l [ -

prove that
B(T) s ¢ (3.3)

it is enough to show that for any H of the form H =(1~e)H,+eH* , ||8]| > ¢ implies

s(0,H) > s(0,H). 3.4
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Put s;=g,"}( 2-¢ 0). Then by Lemma 3.1, [I6]|>c implies that

1-¢
b
g (sp.11811) > — (3.5)
Also by Lemma 3.1, there exists s, > s, such that
g (s.l001) > = (3.6)
Then
Eyp [L;_ﬁ] 2 (1-€)g(sy,1101) > b
2
and therefore by definition of s(0, H)=s(Hg) (see (2.8)) we have
s, S s(8,H). (3.7
On the other hand
b-¢
£,0 = .
g(s,0 = == (3.8)

Combining (3.8) and Lemma 3.1, we have forany H =(1-€)H,+¢ H* andany s >s,:

Eyp [%—] S (1-g)g(s,0)+€ s (1-€)g(s;,0)+€ = b.
Therefore s 2 s(0,H) forall s >s,,and so

s, 2 s(0H). 3.9
Thus (3.4) follows from (3.7) and (3.9), and so (3.3’) holds. Now we will prove that
B(T)z2 c¢. (3.10)

Let ¢, be any positive number smaller than ¢ and let ||8*||=c,. Let H} be the
distribution concentrated at the point mass (y,,%,) where x =A_ 0%, A, —o0 and

v, =X, 0% . Set H =(1-€)Hy+eH, . In order to prove (3.10) it is enough to show
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that
sup || T(H ) 2 ¢ . (3.11)

Suppose (3.11) is not true. Then by passing to a subsequence, which we continue to label

H,,wehave T(H, )=0,, with

v 9 r
v ..'._\‘.\’. AP Ry

lim 8, =0 (3.12)
and
Nell < 1e*ll = ¢, (3.13)
It follows that
. , . 2 ,
im _ _ |y,-x,0| = lim__ A (||6*||°~0*'6) = .
Then since
y -x0 y, -x,0
Ey P [—s—} = (1-e)g(s,]18,1)+ep (—S—J (3.14)
letting s <sl=g1'l(’;:: , 0) and using Lemma 3.1 gives
) y-x0,
hmn_’°° EH'p — 2 (1-€)g(s,00+€e > (1-€)g(s;,0)+e
= (1-g) b=t =
= (l1-¢) e +€ b.
This implies that
. lim __ s(8,,H,)2 s Y os<s,
and so we have
limn_‘“ s(8,,H,)2 5. (3.15)

N On the other hand ‘
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(1-€)g(sy,c;) < (1-€)g(sy,¢) = b
and by Lemma 3.1 we can find s, <5, such that

(1-€)g(sy,¢cy) < b .

This gives
Ey p[l'—s’:ﬂ:—] = (1-€)g(sy,¢,) < b
and
s(8*,H,) < s, (3.16)

Since (3.15) and (3.16) contradict the fact that T(H,)=9, minimizes s (-, H,) for each
n , we have established (3.10). In order to complete the proof it is enough to show that if

€ Tmin(b, 1-b), then

- -1|b-
g; ! [81 1[1_: ,0] lﬁe] — oo (3.17)

Let bs 0.5,sothat min (b, 1-b)=b . Then we have

. -11b-¢ e -1 =
e s 81 [1—:;'0]' timg o 817 (8,0 = e

and so

s

. <1|_ -1]b-€ b o -1 b\ _
hmeTb 82 [81 [ ,0], —l-E} = lim Tmgz (s, 1—b) = oo, O

3.2 Maximum bias of S-estimates for (y, x) multivariate normal.

If z=(y,x) ~ N(0, Ip*l),then

1
g(s.y) = A((1+yH)?/s)
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where A(A)= E p(Au), with u ~N (0, 1). Then

1
2\7
-1 = U+y)°
(tv -
81 Y) PEIPRS
and

L
2

g s,y = ([sh~l@P-1)? .

This gives the following expression for squared bias:

b 2
h_l(—l-e)
B¥(T)= | ———= | -1, (3.18)
hol(2=E)
1-¢

3.3 Maximum bias of S-estimates when p is a jump function.

Consider the special family of jump functions p, (which satisfy AJ):

0 if |u|<c

.19
Uit (k| 2c (3.19)

p.(u) =

Given a sample u=(u,..., u,), the corresponding M-estimate of scale is given by
1
sp(u) = - l“l(n—[nb])

where  |ulqy, ..., |u|,, are the order statistics for the absolute values
luy oo g |
For the choice p,_ , the corresponding regression S-estimate minimizes the absolute

value of the (approximate) 1-b quantile of the absolute values |y, -x,0| of the

residuals. Note that this regression S-estimate does not depend upon the choice of ¢, and so

i 1'1"!

-'_ ‘
we henceforth set ¢ = 1.
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;‘-'.; When b=.5, s, (u)=|u| __is the median absolute value (MAV) estimate of
(E53))
o 2
scale. The corresponding S-estimate is identical to Rousseeuw’s (1984) least median of
squared residuals (LMS) regression estimate. (Minimization with respect to @ of a quantile
®) of any monotone transformation of the absolute values |y, —x’;@| results in the same
estimate.)
The following Lemma gives the maximum bias of an S-estimate when p=p, .
i
.= Lemma3.3. Let T, be the S-estimate with jump function p, and right hand side 5.
Assume F; satisfies A2 and G, satisfies A3. Then
' . o b
(1) B(T,) = G__| b-e ()
Fy (1-—2(1_2)) 1-¢
where
. G, (liej]) = 1 - Eg,Folt +x'0) + Eg Fo(—t +x°0) . (3.20)
:‘; (1) mft<b<l—tB (Tb)
o8 = inf ‘ G ' |2(1-Fyu))+—=—1|. (321
‘ Fp! [ ]<l< 1-¢
e 2(1-¢)
A Proof. In this case we have
o
o g(s.l6ll) = P (ly-x8|2s)
L ]
- and so
\ g, (s, = G,Y(h). (3.22)
X
-
o
o




....................................................

j ' We also have

| g(s,0) = 2(1-Fy(s)) (3.23)
;' Using (3.20) and (3.23) in (3.3) gives (i). The result (ii) is obtained by substituting
t=F,! [1-72’{_2—)] in@. O
In the case that (y, x) is multivariate normal, using (3.18) and the fact that for p=p,
-‘i':?’ (A = 2(1-0(5)
we get

e

1 b-¢ 2
o7 (1- 2(1-5))

(b
o7i(1 2(l—e))

BYT,) = -1 (3.24)
where @ is the N(0, 1) distribution function.

It is interesting to note from (3.3) that two distinct values of b give rise to any specified

breakdown point €* € (0,.5), namely b =€* and b = 1-€*. The estimates T, for

two such values of b have different maximal bias curves (i.e., plots of B(T,)= B(T,,¢)

versus € ), both of which explode at €* . In Figure 1 we display two such curves, with bias
. as a function of € given by (3.24) for the values b = .15 and b = .85, which corresponds
'E to a breakdown point €* = .15. The breakdown at €* = .15 is due to implosion for
_,: b = .85 and due to explosion for b = .15 (cf., comments in Section 2.2).

.
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4. M-ESTIMATES WITH GENERAL SCALE

4.1 Definition of M-Estimates with general scale

Let p be a function satisfying AI and let s(H) be a (very) general estimate of the
residuals scale. For example, the general scale functional s(H) may be determined
simultaneously with @, or independently of ©. It is assumed that s(H) is regression
invariant (i.e., invariant under regression transformations y = y +x’b and x= Cclx ), and
residuals scale equivariant (i.e., equivariant under residuals scale change u = qu).

Furthermore, we will assume that s (/) has a breakdown point greater than €, namely

A4, s, = inf{s(H): H=(1-e)Hy+eH*} > 0

sup{s(H): H=(1-€)Hy+eH*} < oo .

52
Then an M-estimator T(H ) of regression, with general scale, is determined by solving
the minimization problem

y -x'0

info EHP S(H)

) 4.1

Under the assumptions on s(H), T(H) is clearly regression equivariant.

If the infimum in (4.1) is attained then it defines T(H), with the choice of T(H)
arbitrary in the case of non-uniqueness. If a value © which attains (4.1) does not exist, then

T(H) is defined by

T(#H) = lim__ 6, (4.2)
where 0, satisfy
lim  Eyp|2itn | o, o Egp | LXQ 43
im Eyp SH) infg _ge En P SGH) (4.3)

Again, in the case of non-uniqueness, the choice of T(H) is arbitrary. It is easy to check

that S-estimates are special types of M-estimates with general scale (see Rousseeuw and

»
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Yohai, 1984), as are Huber (1971, 1981) "proposal 2" simultancous M-estimates of

regression and scale.

4.2 Lower bound for the minimax bias of M-estimators.

Let g (s,]6]]) beasin (3.1) and put

- o ~1 €
Ay(s) = & [s,g(s,0)+ - ] (4.4)

Ay = inf o, 1 AG) (4.5)

The following lemma shows that A 0 is in fact a lower bound for the maximum bias over

V. of an M-estimate with general scale.

. Lemmad4.]. Let T be an M-estimate with general scale. Assume p satisfies Al, F,
- satisfies A2, G, satisfies A3, and the scale s(H) satisfies A4. Then

B(T) 2 Ap

Proof. let B =B (T), suppose that B <Ap,andtakc ¥ > 0 such that

B < Ap -Y . 4.6)
e Also take 6 such that
. -XL
A~ S 16l s Ay—4 4.7
,! Let H* be the distribution corresponding to a point mass at (y,,X;) where

y;=x,8=0 and x,=OX, with A, 500, Put H,=(1-€)Hy+eH* and

o 0* = TH,) . (4.8)
o,

If 8* is unbounded, (4.6) is contradicted and the theorem is proved. Assume 6 is

.........................................................................

................................................................
........................
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bounded, and then we may also assume that 6* — ©6* . By A4 we may assume that

s, =s(H;)— s >0. According to (4.6) we have

16*| < Ap—y . (4.9)

L,®) = Emp{15§3],

Then by Lemma (3.1) we have

6|2-0*6
Li®7) 2 (I_E)EHOP[L]+ep lxi ﬂ“__x_} .

s s,

Since (4.7) and (4.9) imply

%, (11618 6)]
— o0

§;
we have
lim L, (9‘-"') 2 (l—e)EHop [-'SL] + €
= (1-¢€)g(s,0) + € .
We also have

L‘(é) = (I—E)EHOP['X':__XG_] = (1"5)8(5“-,6)

and then by Lemma 3.1 we have

limL,(6) 2 (1-€)g(s,0) .

Since L, (8*)s L, (6) we also have




VTR Y VWV W TR TR e L ey

<
-20-
(1-€)g(s,0) + & < (1-¢€)g(s,6) .
" Therefore by Lemma (3.1) we have
':‘:,:‘- 116]] 2 g, ! [s,g(s,0)+ £ ]
{ 1-¢
g = A,(5) 2 4,
and this contradicts (4.7). d

f‘ 4.3 Optimality of S-estimates with jump function p.

...._

o From now on it will be convenient to show explicitly that g depends on p, and so we
o will write g (s, 8l]) . For re R and s >0 define

-t
. hols,2) = Erp [)s__J

We will need the following assumption.

R
PPN

A2* F, hasadensity f, satisfying A2,andfor r>0 and y >0

fo(y +1)+fo(y —1)
foO)

ay) =

is a non-decreasing function of y .

A2* is satisfied for example in the important case where Fjy is the Gaussian

Ad distribution N (0, 62). This follows because in the Gaussian case we have
:-::j 4

N +0)+ -t —

..:_ a(y) = fo()’ ) fo()’ ) - 2e 01 Cosh L ’
r_.f‘"

- and
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e ° sinh

—’L}z 0 ifr>0andy>0.

L
o c

A2* evidently holds in a number of other interesting situations — for example it is easy
to verify A2* when F is double exponential.

The following Lemmas will show that A 0 is minimized when p is a jump functon.

This will enable us to compute the minimum of A o

Lemma4.2. Assume p sausfies A/ and F; satisfies A2*. Let s >0 and show that the

jump function p_ satisfies

ho (5,00 = h,(s,0) . (4.10)
Then
hp‘(s,t) 2 hp(s,r) ¥ reR .
Proof.
ho (s.8)= hy(s,0) = =s joc () [fo(s'y +x)+f0(sy—r)}dy
+sj':(l-0(y)) [fo(sy +r)+f0(sy—r)]d,v
= —11+12 .
with & = JoEe* ¥ folse =) , A2* gives

folsc)

IS sk [ pO)fo(sy)dy

Iy 2 sk [T PO folsy)dy .
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Thus (4.10) gives

hp (s, A)=h (s,0)2 k [-s J'OC PO folsy) dy +s5 j':(l—p(.v))fo(sy)dy] 20. 0O

Lemma4.3. Assume p satisfies Al, Fj satisfies A2* and G, satisfies A3. Then for any
s >0 there exists a jump function p,. such that
(1) 8p.(s,0) = g,(s,0)

(i1) gpc(s,z) 2 gp(s,t) Yte R.

Proof: Follows from Lemma 4.2 conditioningon x. (O

Lemmad4.4: Assume p satisfies Al, Fy satisfies A2* and G, satisfies A3. Then

(1) Ap(s) 2 inf, A,

(1) Ap () = G 2(1—F0(sc))+l—i?

C

where G, (A) is defined in (3.20).

Proof:
(1) Follows immediately from Lemma 4.3.
(ii) Follows from the definition of A, (s),(3.22) and (3.23). a

The following theorem, together with Lemma 3.3(ii), shows that an S-estimator with a

jump function p, minimizes the maximum bias over the class of M-estimates.
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Theorem4.1. Let T be an M-estimate and assume A/, 42*, A3, and A4. Then

B(T) 2 inf , G,‘x [2( 1~Fy(t))+ } : (4.1
e ([ ¢ 0
’ {‘y(l E)} r
Proof: The theorem follows from Lemma 4.4 since G, {2( 1-Fole)) + } is only

< 1 and this is equivalent to

defined when 2[ 1 - Fu(t) ] + "

’ 1
a1 | g
g F<Fo {2(14)}
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5. GM-ESTIMATES

5.1 Characterizing the Bias of GM-Estimates

We now consider GM-estimates of regression T=T(H) obtained by solving

Eyn(y-X’G,HXH)]—;W =0 5.1)

for 8. The following assumptions will be used.
AS. n(u,v) is

(1) continuous,

(i) odd, and monotone non-decreasing in u ,
(1) bounded, with iulv)n(u,v)= l.

Observe that the optimal bounded influence estimates obtained by Krasker (1980) and

Krasker and Welsch (1982) of this form with N(u,v)=wy_(uv) in the Huber family
W, (u) = sign (u)max (c, |u]) . (5.2)

The following lemma characterizes the possible biases of GM-estimates when

HeV

.-
Lemma 5.1. Assume that n satisfies AS and F; sa:sfies A2. Let T(H) be the GM-
estimator defined by (5.1). Then there exists H, =(l-€)H,+eH} such that
T(H,)— @ if and only if

€
1~-¢

‘:i - I £,y =x 8 1xl) -] (5.3)
|

b Proof. If there exists an H e V_ such that T(H)= 0, then (5.3) follows immediately

from (5.1). Suppose now that (5.3) is satisfied with strict inequality. We will show that in
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this case there exists u, v with v >0 such that

l1-¢
n(u,v) = |wl
where w=E, n(y -x'6, ||x]|)ﬁ. Take as H™* the distribution with point mass at
) (X

X, =~ viiwll, y0=u+x’(§0. Thenif H=(1-g)H,+e H* , we have

X v || wil

E, n(.v—x’e,llxll)H—":| = (1-e)w+e ||| ’;5 [‘VW} 0. 0O

5.2 Optimality of the sign function n,.

Consider the GM-estimate based on the "sign" function N,(u,v)= sgn (u):

Esgn(y—x'e)L = 0. (5.4)
f1x]|

The solution O8(H) of (5.4) minimizes

E-L1|y_xe| . (5.5)
IIxl]

Thus the estimate is a weighted L1 estimate with weights || x; I”! for a finite sample

(y,ox), i=1,..., n . In the case of p=1 it is easy to see that the estimate is the

ém = med {y—‘} (5.6)
X

We shall now show that the choice n, minimizes the maximum bias over V. . We need

median of the slopes:

the following Lemma.
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Lemma 5.2. Assume y:R—>R is (a) odd, (b) monotone non-decreasing and

(c) sup y=1. It follows that:
(1) qW(t )=Ef,y(y +1) is monotone non-decreasing.
(ity If Fy 1s symmetric, then qw(t)tZO and qw(—r)=—qw(1).
(iii) If F, satisfies A2, then |qw(t)l < Iq%(t)l where (1) =sgn (u).

Proof.

(1) Let ty >, , then
qw(tz)—qw(tl) = I_:[w(y +)-y(y +t1)] dFyy) 2 0

by property (b) of .

(i1) Since qw(0)=0,(i) gives qw(t)tZO. On the other hand
qy(-1) = Ep¥(y-t) = Epy(-y-1)
= —Epy(y+t) = =q, ().
(ii1) By (il) we can assume ¢ > 0, and therefore
a,(0) = [TVOIF G -0=-F(y+0]dy
Since y(y)S1 and f(y—-t)2f(y +t) for y 20, we have
q,(1) < fou[f(y-t)—f(yﬂ)]dy

= 4y, (1) O

Now we can prove that N, is optimal.

Theorem 5.1. Suppose that N satisfies AS, F, satisfies A2 and G, satisfies A3. Let T be

the GM-estimate based on 1 and T, be the GM-estimate based on 1, then
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B(T,e) 2 B(T,.€)

Proof: Let

wn
~1

ra (11811 = liEy,n(y ~x0. lIxih =] . (
X|

A3 implies that the nght hand side expectation depends only on {{8!/. Then according to

Lemma 5.1 1t is enough to show that

Chel) < v Cliell) (5.8)
Setting 6=A(1,0,..., 0) for A 20 without loss of generality, we have
X1
Q) = Egn(y =Ax, |Ixll) — . (5.9)
[Ix|

Taking conditional expectation with respect to x in (5.9) we get

f,‘{(}»-x)i Ey, n(y-kxl,HXH)H—il}—l(x = Epon(_v*lxl,fi’d()% (5.10)

and therefore by Lemma 5.2, putting W(y)=n(y, ||xll) and 1= -t x,, we get

el

En,n(y —hxy, IX) —= < By mg(y =hx. X)) -

S.
I .

Then (5.9)-(5.11) vield (5.8). O

5.3 Optimatily of n, among all Equivariant Estimates for p = 1

So far we have obtained min-max bias robust estimates over two specific classes of
cquivdriant regression estimates. It would of course be highly desirable to obtain a min-max
bias solution over the class of all equivariant reqgression estimates. Although it is not vet
clear how to obtain such an estimate for general p , we have the following solution for the

special case p = 1.
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Theorem 5.2. For the model (2.6) with p = 1, the median of the slopes estimate ém

given by (5.6) minimizes the maximum bias among all regression equivariant estimates.

Proof: The proof follows lines quite analogous to Huber’s (1964) proof of the min-max bias

property of the median among all translation equivariant estimates.

5.4 Computing the maximum bias

Lemma 5.3. Assume 1| satisfies AS, F satisfies A2 and G, satisfies A3, then if T is the

GM-estimate corresponding to 1| we have

(1) zn(k) is monotone non-decreasing in A ;

.. _, -1 €
(i) B(T)—tn [ e ].

Proof. According to Lemma 5.2, tT’; (A, x) defined in (5.7) is monotone non-decreasing
in |A| forall x. Then (i) follows. Use of (i) and Lemma 5.1 gives (ii). (O
We will compute now tno(l), when y and x are normal. From (5.6) we have for

p>1

fno(A) = | E sign(y -2 x) —— |

2 3
(x“+v)*

where y, and x are N(0,1) and v is chi-square with (p —1) degrees of freedom.

(13—1)’ y, x, and v independent. Then

(M) = [E(200hx)-1) —F—|

(xz+v).;_




............

A R
In the case that p =1
;o rno(k) = ‘Esign(_v—kx)signxl

= | Esign(<-1)|
X

where v, x are independent N (O, 1). In this case v = 2 is Cauchy and then
X

- ) = {1—2 [ia-“—l—(—”—‘ +l”= 2an” ()
” ne n 2 -

Therefore in this case we have

o _ nE
: B(Ty) = m['—zm—e)]‘

-
S
\
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6. INCLUDING THE INTERCEPT

The results so far do not cover the case of a regression model with an intercept. This is
because they were obtained under the assumptions that the contamination affects all the
coordinates of x. Nevertheless, all our results for the regression parameter remain

unchanged for the regression model with intercept:
y = a+x0+u (6.1)
where y, x, 0 and u are as before and « is the intercept parameter.

Consider the following class of S-estimates of (a,0): Let T* be any location
functional defined on the class of distribution functions on R. Given a p function as in
Section 2.1, and a distribution function 4 on RP*! , we define an S-estimate T(H) of
the regression parameter as the vector 8 which minimizes the scale functional s(Hg ),
where Hg is the distribution function of y -x'@-T*(Hg) and where Hy is the
distribution function of y —x’8. Now one naturally takes the final location estimate to be
T"'(HT(H)), ie., the location estimate T* applied to the "residuals” y ~x’T(H). This
class contains as a particular case the usual S-estimate of the regression and intercept
parameters, simply by taking T* equal to the corresponding S-estimate of location. Similar

extenstons are possible for M and GM estimates.
Assume now that T* is Fisher consistent, i.e., for any symmetric distribution F on

R, T*(F)= 0 and has breakdown point at least €. Then it can be shown that the results of
Theorems 3.1, 4.1 and 5.1 still hold for estimating 6 in the model (6.1).

It remains to find (T,T*), with T an M-estimate with general scale (or a GM-
estimate) and T* a location estimate, such that the the maximum bias of the intercept is
minimized. We conjecture that choosing T* to be the median and T the corresponding

min-max bias estimate for 8 will solve this problem.




BT 2ol o 28 o
. o [ PN
R L,

231 -

7. COMPARING MIN-MAX BIAS ESTIMATES

The result of solving the min-max bias problem over the class of regression M-
estimates with general scale and bounded p, yields the discontinuous jump function p_
Consequently the S-estimate which achieves the min-max bias does not have an influence

curve, and it has a slower rate of convergence than usual: namely n~ 13

, the same rate of
convergence as Rousseeuw’s (1984) least median squared residuals (LMS) estimate. This 15
evidently the price one has to pay when one wishes to control bias over the class of M-
estimates with bounded p. On the other hand, the min-max bias is independent of the

number of carmers, p .

The mun-max bias GM-estimate of Section 5 does have a bounded influence curve (see
Hampel et. al., 1986), and enjoys the usual rate of convergence under regularity conditions.
However, its bias and breakdown point depend upon the dimensionality p of the carmer
space (see Maronna, Bustos and Yohai, 1979, and Maronna and Yohai, 1987a).
Furthermore, it is necessary to robustly estimate the covariance matrix to implement the

GM-estimate, and this is not necessary for the S-estimate.

Nonetheless one wonders how the two min-max estimates compare for fractions of
contamination smaller than their breakdown points. First some computations were carried
out under the unrealistic assumption that the covariance matrix for the carriers is known.
Figure 2 displays the resulting bias curves of the min-max GM-estimate p = 1,2,3,5, 10
and 15 carriers, along with the bias curves of the min-max S-estimate S* and the maximal
bias curve of the LMS estimate (these latter biases being independent of the number of
carmiers p). Several observations are immediate: For each p 2 2 the optimal GM-estimate
has significantly smaller bias than the optimal S-estimate for fractions of contamination not
too close to the GM-estimate breakdown point. Of course, as € approaches the breakdown

point of a GM-estimate for any give p, the S-estimate will strongly dominate the GM-

estimate. Also, the performance of LMS (which is the limiting form of S* as € — .5) 18
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W
sufficiently close to that of S* to regard it as an "excellent” approximation to a min-max
bias solution (this is very similar to the results of Martin and Zamar, 1987a, who show that
an appropnately scaled median is an excellent approximation to the min-max bias scale
s estimate for a positive random variable).
- By Theorem 5.2 the optimal GM-estimate ém for p =1 1s min-max bias optimal
among all regression equivariant estimates with model intercept zero, and also has
{ breakdown point .5. This global optimality of the GM-estimate and its actual degree of
2 dominance over the optimal S-estimate at p = 1 begs the following important question:
Does there exist a min-max bias regression estimate among the class of all regression
. equivariant estimates ?

We also made some calculations to reveal how estimation of the covariance matrix
inflates the min-max biases of the GM-estimates. In order to do so we made use of recent
q results on the maximal bias of covariance estimates due to Maronna and Yohai (1987b). The

results are displayed in Table 1 for the case of the covariance matrix estimate studied by
Tyler (1987). Clearly, the price of estimating covariance can be high, even when the fraction
® of contamination is far from the breakdown point of the GM-estimate with known
2 covariance. See for example the ¢ = 05, p =15 and € = .2, p = 3 cases. Of course,
the smaller breakdown points of the covariance matrix estimates results in smaller

[ breakdown points for the GM-estimates with estimated covariance.

The gross-error-sensitively (GES) is the supremum of the norm of the influence curve,

and it is a measure of the maximal bias caused by a vanishingly small fraction of

‘ contamination. The GES is the derivative of the maximal bias curve at € = 0, for well-
: behaved estimators having an influence curve (which LMS and S* do not!). In Figure 2,
we display GES-based linear approximations to maximal bias for the optimal GM-estimates

. for p =1 and p = 10. The GES approximation seems rather good for values of € up to

say 40% or 50% of the breakdown point. This is in agreement with Hampel's rule of thumb
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(see Hampel et al,, p 178).

GM-estimates

) €= 0.05 e=0.10 €= 0.15 € = 0.20
1 0.083 0.18 0.28 0.41
2 0.11 (1D* 025 (.23) -1t (=) 0.68 (.55
3 0.12 1D 029 (.25 - (=) 1.39  (.70)
4 0.15 (.14) 0.39 (.31 - (=) 0o (.82)
5 0.19 B¥)) 049 (36) 2.85 (.59) oo (1.00)
10 0.31 (.23) oo (.50 o© (.97) oo (o0)
15 0.62 (29) oo (.68) oo (1.7 o0 (o00)
S-estimates
S* .49 .77 1.05 1.37
LMS 53 .83 1.07 1.52

Table 1. Min-Max Biases of Optimal GM-estimates with Estimated

Covariance Matrix and Optimal S-estimates

* Numbers in parentheses are biases with covariance known
(i.e., they correspond to points on the curves in Figure 2)

t These three missing values were not computed because we
did not have available the corresponding biases for the
covariance matrix estimate. We hope to provide the
needed computation in the near future.
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